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Abstract

We study the attitude of decision makers to skewed noise. For a
binary lottery that yields the better outcome with probability p, we
identify noise around p with a compound lottery that induces a distri-
bution over the exact value of the probability and has an average value
p. We characterize a new notion of skewed distributions, and use a re-
cursive non-expected utility to provide conditions under which rejection
of symmetric noise implies rejection of negatively skewed noise, yet does
not preclude acceptance of some positively skewed noise, in agreement
with recent experimental evidence. In the context of decision making
under uncertainty, our model permits the co-existence of aversion to
symmetric ambiguity (as in Ellsberg’s paradox) and ambiguity seeking
for low likelihood “good” events. We also use the model to the study
of random allocation problems and show that it can predict systematic
preference for one allocation mechanism over the other, even though
the two agree on the overall probability distribution over assignments.
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1 Introduction

Standard models of decision making under risk assume that individuals obey

the reduction of compound lotteries axiom, according to which a decision

maker is indifferent between any multi-stage lottery and the simple lottery that

induces the same probability distribution over final outcomes. Experimental

and empirical evidence suggest, however, that this axiom is often violated

(see, among others, Kahneman and Tversky [26], Bernasconi and Loomes [6],

Conlisk [12], Harrison, Martinez-Correa, and Swarthout [23], and Abdellaoui,

Klibanoff, and Placido [1]). Individuals may have preferences over gambles

with identical probability distributions over final outcomes that differ in the

timing of resolution of uncertainty. Alternatively, if individuals distinguish

between the source of risk in each stage and thus perceive risk as a multi-stage

prospect, independently of time, they may care about the number of lotteries

they participate in or about their order.

Halevy [22] and Miao and Zhong [33], for example, consider preferences

over two-stage lotteries and demonstrate that individuals are averse to the

introduction of symmetric noise, that is, symmetric mean-preserving spread

into the first-stage lottery. One rationale for this kind of behavior is that the

realizations of a symmetric noise cancel out each other but create an unde-

sired confusion in evaluation. On the other hand, there is some evidence that

asymmetric, positively skewed noise may be desirable. Boiney [7] conducted

an experiment in which subjects had to choose one of three investment plans.

In all three prospects, the overall probability of success (which results in a

prize x = $200) is p = 0.2, and with the remaining probability the investment

fails and x = $0 is received. Option A represents an investment plan in which

the probability of success is given. In B and C, on the other hand, the prob-

ability of success is uncertain. Prospect B (resp., C) represents a negatively

(positively) skewed distribution around p in which it is very likely that the

true probability slightly exceeds (falls below) p but it is also possible, albeit

unlikely, that the true probability is much lower (higher).1 Boiney’s main find-

1Specifically, option B was such that with probability 0.9 the true probability of success
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ing is that subjects are not indifferent between the three prospects and that

most prefer C to A and A to B. Moreover, these preferences are robust to

different values of x > x and p.

In Boiney’s experiment, the underlying probability of success p was the

same in all three options. In recent experiments, which we discuss in details

in Section 3, Abdellaoui, Klibanoff, and Placido [1] and Abdellaoui, l’Haridon,

and Nebout [2] found strong evidence that aversion to compound risk (i.e.,

noise) is an increasing function of p. In particular, their results are consistent

with a greater aversion to negatively skewed noise around high probabilities

than to positively skewed noise around small probabilities.

In this paper we propose a model that can accommodate the behavioral

patterns discussed above. For a binary lottery (x, p; x, 1 − p) with x > x, we

identify noise around p with a two-stage lottery that induces a distribution over

the exact value of the probability and has an average value p. We introduce and

characterize a new notion of skewness, and use a version of Segal’s [39] recursive

non-expected utility model to outline conditions under which a decision maker

who always rejects symmetric noise will also reject any negatively skewed noise

(for instance, will prefer option A to B in the example above) but may seek

some positively skewed noise.

We suggest two applications. First, our model can be used to address the

recently documented phenomenon of some ambiguity seeking in the context

of decision making under uncertainty. The recursive model we study here was

first suggested by Segal [38] as a way to analyze attitudes towards ambiguity.

Under this interpretation, ambiguity is identified as a two-stage lottery, where

the first stage captures the decision makers subjective uncertainty about the

true probability distribution over the states of the world, and the second stage

determines the probability of each outcome, conditional on the probability

distribution that has been realized. Our model permits the co-existence of

aversion to symmetric ambiguity (as in Ellsberg’s [18] famous paradox) and

is 0.22 and with probability 0.1 it is only 0.02. In option C, on the other hand, with
probability 0.9 the true probability of success is 0.18 and with probability 0.1 it is 0.38. The
average probability of success in all three prospects is 0.2.
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ambiguity seeking in situations where the decision maker anticipates a bad

outcome, yet believes that there is a small chance that things are not as bad

as they seem. In this case, he might not want to know the exact values of the

probabilities.

We also apply our model to study a simple variant of the house allocation

problem (or one-sided matching), where the goal is to look for a systematic way

of assigning a set of indivisible objects to a group of individuals having pref-

erences over these objects. We demonstrate that different mechanisms, which

agree on the overall probability distribution over assignments and hence are

being treated equivalently in the standard model, induce different compound

lotteries. Comparing two familiar mechanisms, variants of the random serial

dictator and of the random top cycle, our model suggests that the former will

be preferred for a large set of parameters, yet permits the opposite preferences

when one type of the goods is scarce, but almost everyone prefers it over the

alternative type (see Section 5 for details).

The fact that the recursive evaluation of two-stage lotteries in Segal’s model

is done using non-expected utility functionals is key to our analysis. It is easy

to see that if the decision maker uses the same expected utility functional

in each stage he will be indifferent to noise. In Section 6 we further show

that a version of the recursive model in which the two stages are evaluated

using different expected utility functionals (Kreps and Porteus [27], Klibanoff,

Marinacci, and Mukerji [25]) cannot accommodate the co-existence of rejecting

all symmetric noise while still accepting some positively skewed noise.

This paper confines attention to the analysis of attitudes to noise related

to the probability p in the binary prospect which pays x with probability p and

x < x otherwise. In reality the decision maker may face lotteries with many

outcomes and the probabilities of receiving each of them may be uncertain.

We prefer to deal only with binary lotteries since when there are many out-

comes their probabilities depend on each other and therefore skewed noise over

the probability of one event may affect noises over other probabilities in too

many ways. This complication is avoided when there are only two outcomes

— whatever the decision maker believes about the probability of receiving
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x completely determines his beliefs regarding the probability of receiving x.

Note that while the underlying lottery is binary, the noise itself (that is, the

distribution over the value of p) may have many possible values or may even

be continuous.

The rest of the paper is organized as follows: Section 2 describes the an-

alytical framework and introduces notations and definitions that will be used

in our main analysis. Section 3 studies attitudes towards asymmetric noises

and states our main behavioral result. Section 4 and Section 5 are devoted

to applications. Section 6 comments on the relationship of our paper to other

models. All proofs are relegated to an appendix.

2 The model

Fix two monetary outcomes x > x. The underlying lottery we consider is

the binary prospect (x, p; x, 1− p), which pays x with probability p and x

otherwise. We identify this lottery with the number p ∈ [0, 1] and analyze

noise around p as a two-stage lottery, denoted by 〈p1, q1; ...; pn, qn〉, that yields

with probability qi the lottery (x, pi; x, 1− pi), i = 1, 2, ..., n, and satisfies∑
i piqi = p. Let

L2 = {〈p1, q1; ...; pn, qn〉 : pi, qi ∈ [0, 1] , i = 1, 2, ..., n, and
∑

i qi = 1} .

Let � be a complete and transitive preference relation over L2, which is rep-

resented by U : L2 → �. Throughout the paper we confine our attention to

preferences that admit the following representation:

U (〈p1, q1; ...; pn, qn〉) = V (cp1 , q1; ...; cpn , qn) (1)

where V is a functional over simple (finite support) one-stage lotteries over

the interval [x, x] and c is a certainty equivalent function (not necessarily the

one obtained from V ).2 According to this model, the decision maker evaluates

2The function c: [0, 1] → � is a certainty equivalent function if for some W over one-stage
lotteries, W (cp, 1) = W (x, p;x, 1− p).
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a two-stage lottery 〈p1, q1; ...; pn, qn〉 recursively. He first replaces each of the

second-stage lotteries with its certainty equivalent, cpi . This results in a simple,

one-stage lottery over the certainty equivalents, (cp1 , q1; ...; cpn , qn), which he

then evaluates using the functional V .3 We assume throughout that V is

monotonic with respect to first-order stochastic dominance and continuous

with respect to the weak topology.

There are several reasons that lead us to study this special case of U .

First, it explicitly captures the sequentiality aspect of two-stage lotteries, by

distinguishing between the evaluations made in each stage (V and c in the first

and second stage, respectively). Second, it allows us to state our results using

familiar and easy to interpret conditions that are imposed on the functional

V , which do not necessarily carry over to a general U . Finally, the model is a

special case of the recursive non-expected utility model of Segal [39]. This will

facilitate the comparison of our results with other models (see, for example,

Section 6).

We identify simple lotteries with their cumulative distribution functions,

denoted by capital letters (F,G, and H). Denote by F the set of all cumulative

distribution functions of simple lotteries over [x, x]. We assume that V satisfies

the assumptions below (specific conditions on c will be discussed only in the

relevant section). These assumptions are common in the literature on decision

making under risk.

Definition 1 The function V is quasi concave if for any F,G ∈ F and λ ∈

[0, 1],

V (F ) � V (G) =⇒ V (λF + (1− λ)G) � V (G).

Quasi concavity implies preference for randomization among equally val-

ued prospects. Together with risk aversion (V (F ) � V (G) whenever G is a

3The functional V thus represents some underlying complete and transitive binary re-
lation over simple lotteries, which is used in the first stage to evaluate lotteries over the
certainty equivalents of the second stage. To avoid confusion with the main preferences over
L2, we will impose all the assumptions in the text directly on V .
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mean preserving spread of F ), quasi concavity implies preference for portfo-

lio diversification (Dekel [14]), which is an important feature when modeling

markets of risky assets.4

Following Machina [29], we assume that V is smooth, in the sense that it

is Fréchet differentiable, defined as follows.

Definition 2 The function V : F → � is Fréchet differentiable if for every

F ∈ F there exists a local utility function uF : [x, x] → �, such that for every

G ∈ F ,

V (G)− V (F ) =

∫
uF (x)d[G(x)− F (x)] + o(‖G− F ‖)

where ‖ ·‖ is the L1-norm.

To accommodate the two Allais paradoxes — the common ratio and com-

mon consequence effects — and the mutual purchase of insurance policies and

lottery tickets, Machina [29] suggested the following assumption on the behav-

ior of the local utility function, which he labeled Hypothesis II : If G first-order

stochastically dominates F , then at every point x, the Arrow-Pratt measure

of absolute risk aversion of the local utility uG is higher than that of uF .
5 For

the purpose of our analysis, we only need a weaker notion of Hypothesis II,

which requires the property to hold just for degenerate lotteries (i.e., Dirac

measures), denoted by δy. Formally,

Definition 3 The Fréchet differentiable functional V satisfies Weak Hypoth-

4The evidence regarding the validity of quasi concavity is supportive yet inconclusive:
while the experimental literature that documents violations of linear indifference curves (see,
for example, Coombs and Huang [13]) found deviations in both directions, that is, either
preference for or aversion to randomization, both Sopher and Narramore [42] and Dwenger,
Kubler, and Weizsacker [17] found explicit evidence in support of quasi concavity.

5Graphically, Hypothesis II implies that for given x > y > z, indifference curves in
the probability triangle {(z, p; y, 1 − p − q;x, q): (p, q) ∈ �2

+ and p + q � 1} are “fanning
out”, that is, they become steeper as the probability of the good outcome x rises and the
probability of the bad outcome z falls.
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esis II if for every x and for every y > z,

−
u′′
δy
(x)

u′
δy
(x)

� −
u′′
δz
(x)

u′
δz
(x)

.

3 Asymmetric noise

Our aim in this paper is to analyze attitudes to skewed noise, that is, to noise

that is not symmetric around its mean. For that we need first to formally

define the notion of a skewed distribution.

For a distribution F on [a, b] ⊂ � with expected value μ and for δ � 0,

let η1(F, δ) =
∫ μ−δ

a
F (x)dx be the area below F between a and μ − δ and

η2(F, δ) =
∫ b

μ+δ
[1 − F (x)]dx be the area above F between μ + δ and b (see

Figure 1). Note that η1(F, 0) = η2(F, 0). If F is symmetric around its mean,

then for every δ these two values are the same. The following definition is

based on the case where the left area is systematically larger than the right

area.

Definition 4 The lottery X with the distribution F on [a, b] and expected

value μ is skewed to the left (or negatively skewed) if for every δ > 0, η1(F, δ) �

η2(F, δ) .

μ−δ μ μ+δa b

η
1
(F, δ)

η
2
(F, δ)

Figure 1: Definition 4, η1(F, δ) � η2(F, δ)
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Similarly, right-skewness requires that η2(F, δ) � η1(F, δ) for every δ > 0.

The usefulness of this new notion of skewness will become clear in Section 3.1,

where we discuss the proof of our main behavioral result. (We defer a discus-

sion of related statistical notions to Section 6.)

Recall our notation for two-stage lotteries of the form 〈p1, q1; . . . ; pm, qm〉,

where pi stands for the simple lottery (x, pi; x, 1−pi) and x > x. The following

definitions of rejection of symmetric and skewed noise are natural.

Definition 5 The relation � rejects symmetric noise if for all p, α, and ε,

〈p, 1〉 � 〈p− α, ε; p, 1− 2ε; p+ α, ε〉.

Definition 6 The relation � rejects negatively (resp., positively) skewed noise

if for all p ∈ (0, 1), 〈p, 1〉 � 〈p1, q1; ...; pn, qn〉 whenever
∑

i piqi = p and the

distribution of (p1, q1; ...; pn, qn) is skewed to the left (resp., right).

As before, we assume that the preference relation � over L2 can be rep-

resented as in eq. (1) by U (〈p1, q1; ...; pn, qn〉) = V ((cp1 , q1; ...; cpn , qn)), where

V is a functional over simple lotteries and c is a certainty equivalent function.

The following theorem is the main result of the paper, showing the connection

between the rejection of symmetric and skewed noises.

Theorem 1 Suppose (i) V is quasi concave, Fréchet differentiable, and sat-

isfies Weak Hypothesis II, and (ii) � rejects symmetric noise. Then � rejects

negatively skewed noise, but not necessarily positively skewed noise.

The first part of Theorem 1 provides conditions under which the decision

maker rejects negatively-skewed noise. The conditions on V are familiar in

the literature and, as we have pointed out in the introduction and will fur-

ther discuss below and in Section 4, rejection of symmetric noise is empirically

supported. The theoretical link between attitudes toward symmetric and nega-

tively skewed noise will be useful in the applications we consider in subsequent

sections. The second part suggests that such behavior is consistent with pref-

erence for some positively-skewed noise. The distinction between positive and
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negative skewness is the basis for our analysis, and as we argue, is also sup-

ported by empirical evidence. It is this part of the theorem that distinguishes

our model from other known preferences over compound lotteries that can-

not accommodate rejections of all symmetric noise with acceptance of some

positively-skewed noise (Section 6).

In Example 1 below we go further and introduce a family of functionals for

which we can provide sufficient conditions for acceptance of some positively

skewed noise. In particular, for every p > 0, if the probability q of receiving

(x, p; x, 1−p) is sufficiently small, then the decision maker will prefer the noise

〈p, q; 0, 1− q〉 over receiving the lottery (x, pq; x, 1−pq) for sure. To guarantee

this property, we show that for the functional form of this example, the first

non-zero derivative of V (cpq), 1)− V (cp, q; 0, 1− q) with respect to q at q = 0

is negative (see Appendix B). Note that while Theorem 1 is independent of

the function c, the specification of c is crucial for this result.

Example 1 Let V (cp1 , q1; ...; cpn , qn) = E[w(cp)]× E[cp], where w(x) = ζx−xζ

ζ−1

and cp = βp + (1 − β)pκ.6 These functions satisfy all the assumptions of

Theorem 1, and there is an open neighborhood of (β, ζ, κ) ∈ �3 for which for

every p > 0 there exists a sufficiently small q > 0 such that 〈p, q; 0, 1− q〉 �

〈pq, 1〉. We prove these claims in Appendix B.

Theorem 1 does not restrict the location of the skewed distribution, but

it is reasonable to find skewed to the left distributions over the value of the

probability p when p is high, and skewed to the right distributions when p is

low. The theorem is thus consistent with the empirical observation that deci-

sion makers reject skewed to the left distributions concerning high probability

of a good event, but seek such distributions when the probability of the good

event is low.

Our results can explain some of the findings in a recent paper by Abdel-

laoui, Klibanoff, and Placido [1]. For three different compound lotteries, sub-

jects were asked for their compound-risk premium (as in Dillenberger [15]),

that is, the maximal amount they are willing to pay to replace a compound

6The function V belongs to the quadratic utility model of Chew, Epstein, and Segal [9].
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lottery with its binary, single-stage counterpart. The underlying binary lottery

yields e 50 with probability p and 0 otherwise. The three two-stage lotteries

were 〈0.5, 1
6
; 0, 5

6
〉, 〈1, 5

22
; 0.5, 12

22
; 0, 5

22
〉, and 〈1, 5

6
; 0.5, 1

6
〉, with base probabili-

ties of winning p = 1
12
, p = 1

2
, and p = 11

12
, respectively. They found that

the compound-risk premium is an increasing function of p. Other studies

too provide evidence for the pattern of more compound risk aversion for high

probabilities than for low probabilities, and even for compound risk seeking

for low probabilities (see, for example, Kahn and Sarin [25] and Viscusi and

Chesson [45]). Following Theorem 1, we argue that it is not only the mag-

nitude of the probabilities that drive their results, but the fact that in the

three lotteries above, noise is positively skewed, symmetric, and negatively

skewed, respectively. This is further supported by the results of two recent

papers: Masatlioglu, Orhun, and Raymond [31] found that individuals exhibit

a strong preference for positively skewed noise over negatively skewed ones,

while Abdellaoui, l’Haridon, and Nebout [2] found that for many values of r,

subjects prefer the positively skewed noise
〈
r, 1

3
; 0, 2

3

〉
over its reduced version,〈

r
3
, 1
〉
.

3.1 Outline of the Proof of Theorem 1

We discuss only the first part of the theorem, according to which rejection

of symmetric noise implies rejection of negatively skewed noise (the second

part, claiming that rejection of symmetric noise does not imply rejection of

positively skewed noise, is proved by Example 1). In the recursive model,

rejection of symmetric noise implies that for any p, the local utility of V at

δcp prefers 〈p, 1〉 to 〈p − a, 1
2
; p + a, 1

2
〉.7 By Weak Hypothesis II, this ranking

prevails when evaluated using the local utility at δcp∗ , for p
∗ > p. We then use

the following characterization of skewed to the left distributions.

Definition 7 Let μ be the expected value of a lottery X. Lottery Y is obtained

from X by a left symmetric split if Y is the same as X, except for that one of

7More precisely, u
δcp

(cp) �
1
2uδcp

(cp−α) +
1
2uδcp

(cp+α), for any p.
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the outcomes x � μ of X is split into x + α and x − α, each with half of the

probability of x.

Theorem 2 If the lottery Y = (y1, p1; . . . ; yn, pn) with expected value μ is

skewed to the left, then there is a sequence of lotteries Xi, each with expected

value μ, such that X1 = (μ, 1), Xi → Y , and Xi+1 is obtained from Xi by a

left symmetric split. Conversely, any such sequence converges to a skewed to

the left distribution.

Pick a lottery 〈p, 1〉. By Theorem 2, any skewed to the left noise Q around

p can be obtained as the limit of left symmetric splits. The key observation

is that by repeatedly applying Weak Hypothesis II, each such split will be re-

jected when evaluated using the local utility at δcp . By Fréchet differentiability,

it will also be rejected by �. Quasi concavity then implies that 〈p, 1〉 � Q.

4 Ambiguity aversion and seeking

Ambiguity aversion is one of the most investigated phenomena in decision

theory. Consider the classic Ellsberg [18] thought experiment: subjects are

presented with two urns. Urn 1 contains 100 red and black balls, but the

exact color composition is unknown. Urn 2 has exactly 50 red and 50 black

balls in it. Subjects are asked to choose an urn from which a ball will be drawn,

and to bet on the color of this ball. If a bet on a specific urn is correct the

subject wins $100, zero otherwise. Let Ci be the bet on a color (Red or Black)

draw from Urn i. Ellsberg predicted that most subjects will be indifferent

between R1 and B1 as well as between R2 and B2, but will strictly prefer R2

to R1 and B2 to B1. While, based on symmetry arguments, it seems plausible

that the number of red balls in urn 1 equals the number of black balls, Urn 1

is ambiguous in the sense that the exact distribution is unknown whereas urn

2 is risky, as the probabilities are known. An ambiguity averse decision maker

will prefer to bet on the risky urn to bet on the ambiguous one. Ellsberg’s

predictions were confirmed in many experiments.
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The recursive model was suggested by Segal [38] as a way to capture ambi-

guity aversion.8 Under this interpretation, ambiguity is identified as two-stage

lotteries. The first stage captures the decision maker’s uncertainty about the

true probability distribution over the states of the world (the true composi-

tion of the urn in Ellsberg’s example), and the second stage determines the

probability of each outcome, conditional on the probability distribution that

has been realized. Holding the prior probability distribution over states fixed,

an ambiguity averse decision maker prefers the objective (unambiguous) sim-

ple lottery to any (ambiguous) compound one. Note that according to Segal’s

model, preferences over ambiguous prospects are induced from preferences over

the compound lotteries that reflect the decision maker’s beliefs. That is, the

first stage is imaginary and corresponds to the decision maker’s subjective

beliefs over the values of the true probabilities.

While Ellsberg-type behavior seems intuitive and is widely documented,

there are situations where decision makers actually prefer not to know the

probabilities with much preciseness. Suppose a person suspects that there

is a high probability that he will face a bad outcome (severe loss of money,

serious illness, criminal conviction, etc.). Yet he believes that there is some

(small) chance things are not as bad as they seem (Federal regulations will

prevent the bank from taking possession of his home, it is really nothing, they

won’t be able to prove it). These beliefs might emerge, for example, from

consulting with a number of experts (such as accountants, doctors, lawyers)

who disagree in their opinions; the vast majority of which are negative but

some believe the risk is much less likely. Does the decision maker really want

to know the exact probabilities of these events? The main distinction between

the sort of ambiguity in Ellsberg’s experiment and the ambiguity in the last

examples is that the latter is asymmetric and, in particular, positively skewed.

On the other hand, if the decision maker expects a good outcome with high

8There are many other ways to model ambiguity aversion. Prominent examples include
Choquet expected utility (Schmeidler [37]), maximin expected utility (Gilboa and Schmei-
dler [21]), variational preferences (Maccheroni, Marinacci, and Rustichini [30]), α-maxmin
(Ghirardato, Maccheroni, and Marinacci [20])), and the smooth model of ambiguity aversion
(Klibanoff, Marinacci, and Mukerji [28]).
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probability, he would probably prefer to know this probability for sure, rather

than knowing that there is actually a small chance that things are not that

good. In other words, asymmetric but negatively skewed ambiguity may well

be undesired.

There is indeed a growing experimental literature that challenges the as-

sumption that people are globally ambiguity averse (see a recent survey by

Trautmann and van de Kuilen [43]). A typical finding is that individuals are

ambiguity averse for moderate and high likelihood events, but ambiguity seek-

ing for unlikely events. This idea was suggested by Ellsberg himself (see Becker

and Bronwson [5, fnt. 4]). In a recent large-scale experiment, Kocher, Lahno,

and Trautmann [19] used Ellsberg’s two-color design (symmetric ambiguity)

and found ambiguity aversion on the domain of moderate likelihood gains.

However, they documented either ambiguity neutrality or ambiguity seeking

for low likelihood gains, where ambiguity events are implemented as bets on

the color of a colored chip drawn from a bag with an unknown distribution

of ten different colors. Similar results are reported in Dimmock, Kouwenberg,

Mitchell, and Peijnenburg [16]. In their study, individuals were on average

indifferent between betting on the event that one out of ten colors is drawn

from the ambiguous bag, and a risky lottery with 20 percent known chance of

success, showing a significant amount of ambiguity seeking for unlikely events.

Camerer and Webber [8] pointed out that such pattern may be due to per-

ceived skewness, which distorts the mean of the ambiguous distributions of

high and low probabilities.

Our model is consistent with the co-existence of aversion to both symmetric

ambiguity (as in Ellsbergs paradox) and ambiguity seeking for low-probability

events. To illustrate, consider (i) a risky urn containing n > 2 balls numbered

1 to n, and (ii) an ambiguous urn also containing n balls, each marked by a

number from the set {1, 2, . . . , n}, but in an unknown composition. Betting

that a specific number will not be drawn from the risky urn corresponds to

the simple lottery with probability of success n−1
n
. While we dont know what

distribution over the composition of the ambiguous urn does the decision maker

hold, it is reasonable to invoke symmetry arguments. Let (m1, . . . ,mn) be a
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possible distribution of of the numbers in the ambiguous urn, indicating that

number i appears mi times (of course,
∑

i mi = n). Symmetry arguments

require that the decision maker believes that this composition is as likely as

any one of its permutations. Unless the decision maker believes that there

are at most two balls marked with the same number, the same bet over the

ambiguous urn corresponds to a compound lottery that induces a negatively

skewed distribution around n−1
n
.9 The hypotheses of Theorem 1 imply that

the bet from the risky urn is preferred.

Consider now the same two urns, but the bet is on a specific number drawn

from each of them. The new bet from the risky urn corresponds to the simple

lottery with probability of success 1
n
, while the new bet over the ambiguous

urn corresponds to to compound lottery that induces a positively skewed dis-

tribution around 1
n
. Theorem 1 permits preferences for the ambiguous bet,

especially where n is large.

5 Allocation Mechanisms

In this section we apply our results to the comparison of two known allocation

mechanisms of indivisible goods. We demonstrate that agents with prefer-

ences as studied in this paper may systematically prefer one mechanism to the

other, even though both mechanisms are considered to be the same in stan-

dard models, in the sense that they induce the same probability distribution

over successful matchings.

Consider the following variant of the house allocation problem (Hylland

and Zeckhauser [24]). Let N = {1, 2, ..., n} be a group of individuals and

assume that there are n goods to be allocated among them. The goods are of

two types, g1 and g2, and we denote by p and 1−p the proportion of each type.

Some individuals prefer g1 to g2 and the rest have the opposite preferences.

We assume that the utility from the desired outcome is 1 and the utility from

9To see this, let F be the distribution of the decision maker’s beliefs. Note that F is non-
decreasing and constant on [ i

n
, i+1

n
) for i � n− 1. Since η1(F, 0) = η2(F, 0) (see Section 3)

and Pr(n−k
n

) > 0 for some k with n � k > 2, it must be that 1−Pr(1)−Pr(n−1
n

) < Pr(1),
from which the result readily follows.
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the other outcome is 0.

Many important goods are allocated using randomizing devices. These

include, among others, the allocation of public schools, course schedule, or

dormitory rooms to students, and shifts, offices, or tasks to workers. We

consider two familiar mechanisms, each consists of two stages.

Random Top Cycle (TC): In the first stage, the allocation of the goods

among the agents is randomly determined, so that the probability of person

i to hold a unit of type g1 is p (and 1 − p for type g2). Those who got their

desired outcome keep it. In the second stage, the rest will trade according to

the following schedule: If k people who hold one type of good and 
 � k people

who hold the other type are unhappy with their holdings, then the latter 


will trade and get their desired outcome, while 
 out of the former k will be

selected at random and get their preferred option. The other k − 
 will keep

their undesired outcome.10

Random Serial Dictatorship (SD): The agents are randomly ordered,

so that the probability of person i to be in place j = 1, . . . , n is 1
n
. Agents

then choose the goods according to this order. A person will get his desired

outcome if when his turn arrives such a unit is still available.

In practice, the second mechanism is a lot more popular than the first one

(see, for example, Sönmez and Ünver [41]). One possible reason is that the SD

mechanis is simpler and easier to implement. Another reason is that mecha-

nisms are used when markets fail or are undesired, and the TC mechanism is

too close in its spirit to a market environment. We offer here an alternative

explanation, based on the preferences analyzed by Theorem 1.

The literature on one-sided and two-sided matching (for a recent survey,

see Abdulkadiroğlu and Sönmez [4]) typically maintains the assumption that

agents are only interested in the overall probability they’ll receive their desired

outcome. This leads to equivalence results of different randomized mechanisms

10This is a variant of the classic top cycle mechanism. It can, equivalently, be formulated
more closely to the familiar top cycle, as a problem of matching with indifferences and using
a specific tie-breaking rule. Since the environment we consider is simple, we maintain our
formulation and slightly abuse the title “cycle.”
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(Abdulkadiroğlu and Sönmez [3]; see also Pathak and Sethuraman [34]). In

particular, Abdulkadiroğlu and Sönmez’s [3] results imply that both TC and

SD lead each of the two types of individuals to the same overall probability of

success. But as we now show, indifference between the two mechanisms is not

preserved when TC is viewed as a two-stage lottery and the analysis of this

paper is applied.

In the formal analysis to follow, we confine attention to the case of large

(continuum) economies. We assume without loss of generality that p, the

proportion of good 1, satisfies p � 1
2
. Let q be the proportion of individuals

who prefers g1 to g2. In the TC mechanism we can therefore identify four

groups:

1. qp will get g1 and like it.

2. (1− q)p will get g1 and will prefer to trade it for g2.

3. q(1− p) will get g2 and will prefer to trade it for g1.

4. (1− q)(1− p) will get g2 and like it.

Consider first the case p < q. The second group is smaller than the third

one, and therefore all members of the second group will be able to trade. In

other words, all those who prefer g2 (the second and the fourth group) are

guaranteed to receive it. Those who prefer g1 face a lottery. With probability

p they will get their desired outcome, and with probability 1− p they will get

their desired outcome if they’ll be able to trade, the probability of this event

is (1−q)p
q(1−p)

. These people will face the two-stage lottery 〈1, p; (1−q)p
q(1−p)

, 1− p〉.

In the SD mechanism, those who prefer g2 are guaranteed to receive it. A

person who prefers g1 will get it only if he is in the top α of the list where

qα � p, that is, if his rank is less than p

q
. If the lottery of this mechanism is

performed at the same stage as the trading lottery of the TC mechanism, then

this mechanism can be viewed as the (degenerate) two-stage lottery 〈p
q
, 1〉.

We obtain that all those who prefer g2 to g1 (1− q of the group) know in

advance that since there is an excess supply of their desired good, they will

eventually get it under both procedures, and are therefore indifferent between
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the two mechanisms. Those who prefer g1 to g2 have to compare X1 = 〈p
q
, 1〉

with Y1 = 〈1, p; (1−q)p
q(1−p)

, 1 − p〉. Since p � 1
2
, Y1 is skewed to the left. If

preferences satisfy the assumptions of Theorem 1, then X1 � Y1, and both

groups will prefer the SD mechanism to the TC one. suppose for example

that p = 2
3
of the units are of type g1 and q = 4

5
of the group prefer it to

g2. It seems indeed plausible that decision makers will prefer to know that

their probability of success is 5
6
rather than to participate in a lottery where

with probability 2
3
they are guaranteed success, but with probability 1

3
their

probability of receiving a desired outcome is only 1
2
.

Consider now the case p > q. In the SD mechanism, the q who prefer g1

are guaranteed to receive it. A person who prefers g2 will get it only if he is in

the top α of the list where (1−q)α � 1−p, that is, if his rank is less than 1−p

1−q
.

In the TC mechanism, there are as before four groups. Since p > q, the third

group is smaller than the second one, and therefore all members of the third

group will be able to trade. In other words, all those who prefer g1 (the first

and the third group) are guaranteed to receive it. Those who prefer g2 face a

lottery. With probability 1 − p they will get their desired outcome, and with

probability p they will get their desired outcome if they’ll be able to trade, the

probability of this event is q(1−p)
(1−q)p

.

We obtain that all those who prefer g1 to g2 (q of the group) know in

advance that since there is an excess supply of their desired good, they will

eventually get it under both procedures, and are therefore indifferent between

the two mechanisms. Those who prefer g2 to g1 have to compare X2 = 〈1−p

1−q
, 1〉

with Y2 = 〈1, 1 − p; q(1−p)
(1−q)p

, p〉. This time, Y2 is skewed to the right. Theo-

rem 1 does not tell us which of the two is better, but using the preferences of

Example 1, we know that for large p and small q, TC is preferred to SD.

These results seem plausible. Generally speaking, for those who are on the

long side of the market (and are therefore not guaranteed ex ante to receive

their desired outcome), the serial dictatorship mechanism is more attractive.

But when almost all the available unites are of type g1 (that is, p is close to

1) but not too many people like it (q is low), the SD mechanism, with its

one stage resolution of uncertainty, is a very unattractive lottery. The TC
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procedure will probably give a person who prefers g2 a unit of g1, which he’ll

find very hard to trade. However, there is also some chance that it will give

him his desired outcome right away. From an ex ante perspective, this slim

chance for a very good outcome may compensate him for his otherwise aversion

to unknown situations.

6 Relations to the literature

In this section we highlight the connection and differences between our defini-

tions and analysis and some other related models.

Recursive Utility: Consider a recursive model in which the decision maker

is an expected utility maximizer in each of the two stages, with Bernoulli

utility functions u and v. The decision maker evaluates a two-stage lottery

〈p1, q1; ...; pn, qn〉 recursively by

U (〈p1, q1; ...; pn, qn〉) =
∑
i

qiu
(
v−1(Ev[pi])

)
(2)

where v−1 (Ev[p]) is the certainty equivalent of lottery p calculated using the

function v. In the context of temporal lotteries, this model is a special case

of the one studied by Kreps and Porteus [27]. In the context of ambiguity,

this is the model of Klibanoff, Marinacci, Mukerji [28]. We now show that this

model cannot accommodate rejection of symmetric noise with acceptance of

some positively skewed noise.

Proposition 1 Suppose � admits a representation as in eq. (2). If � rejects

symmetric noise, then it rejects all noise.

Another special form of recursive utility is discussed in Dillenberger [15],

who studied a property called preferences for one-shot resolution of uncer-

tainty. In the language of this paper, this property means that the decision

maker rejects all noise. Dillenberger confined his attention to recursive pref-

erences over two-stage lotteries in which the certainty equivalent functions in

19



the second stage are calculated using the same V that applied in the first stage

(this is known as the time neutrality axiom (Segal [39]).

Orders of Risk Aversion: Our analysis in this paper is based on function-

als V that are Fréchet differentiable. Segal and Spivak [40] defined a prefer-

ence relation as exhibiting second-order (resp., first-order) risk aversion if the

derivative of the implied risk premium on a small, actuarially fair gamble van-

ishes (resp., does not vanish) as the size of the gamble converges to zero.11 If V

is Fréchet differentiable, then it satisfies second-order risk aversion. There are

interesting preference relations that are not Fréchet differentiable (and that do

not satisfy second-order risk aversion), e.g., the rank-dependent utility model

of Quiggin [35]. The analysis of attitudes towards skewed noise in the re-

cursive model for general first-order risk aversion preferences is not vacuous,

but is significantly different than the one presented in this paper and will be

developed in future work.

Skewed Distributions: Our definition of skewed distributions (Def. 4) is

stronger than a possible alternative definition, according to which the lottery

X with the distribution F and expected value μ is skewed to the left if
∫ x

x
(y−

μ)3dF (y) � 0.

Proposition 2 If X with distribution F and expected value μ is skewed to the

left as in Definition 4, then for all odd n,
∫ x

x
(y − μ)ndF (y) � 0.12

In addition, our notion of skewed to the left distribution implies the follow-

ing relationship between the mean and the median, which does not necessarily

hold under the assumption of negative third moment above.

11Formally, if π(t) is the amount of money that an agent would pay to avoid the non-
degenerate gamble x+tε̃, where E (ε̃) = 0, then π(t) isO(t) and o(t) for first and second-order
risk averse preferences, respectively.

12The converse of Proposition 2 is false. For example, let F be the distribution of
the lottery (−10, 1

10 ;−2, 1
2 ; 0,

4
35 ; 7,

2
7 ). Note that its expected value μ is zero. Moreover,

E
[
(X − μ)3

]
= −6 < 0 and E

[
(X − μ)2n+1

]
is decreasing with n, which means that all odd

moments of F are negative. Nevertheless, the area below the distribution from −10 to −5
is 1

2 , but the area above the distribution from 5 to 10 is 4
7 > 1

2 , which means that F is not
skewed to the left according to Definition 4.
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Proposition 3 If X with distribution F and expected value μ is skewed to the

left, then the highest median m̄(X) of X satisfies m̄(X) � μ.

Increasing Downside Risk: Menezes, Geiss, and Tressler [32] characterize

a notion of increasing downside risk by combining a mean-preserving spread

of an outcome below the mean followed by a mean-preserving contraction of

an outcome above the mean, in a way that the overall result is a transfer of

risk from the right to the left of a distribution, keeping the variance intact.

Distribution F has more downsize risk than distribution G if one can move

from G to F in a sequence of such mean-variance-preserving transformations.

Menezes et al. [32] do not provide a definition (and a characterization as in

our Theorem 2) of a skewed to the left distribution. Observe that our char-

acterization involves a sequence of only symmetric left splits, starting in the

degenerate lottery that puts all the mass on the mean. In particular, our splits

are not mean-variance-preserving and occur only in one side of the mean.
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Appendix A: Proofs

Proof of Theorem 1: Let cp be the certainty equivalent of the lottery

(x, p; x, 1 − p). The two-stage lottery 〈p − α, ε; p, 1 − 2ε; p + α, ε〉 translates

in the recursive model into the lottery (cp−α, ε; cp, 1 − 2ε; cp+α, ε). Since the

decision maker always rejects symmetric noise, it follows that the local utility

u
δcp

satisfies

u
δcp

(cp) �
1
2
u

δcp
(cp−α) +

1
2
u

δcp
(cp+α).

By Weak Hypothesis II, for every r � p,

u
δcr

(cp) �
1
2
u

δcr
(cp−α) +

1
2
u

δcr
(cp+α). (3)

Consider first the lottery over the probabilities given by Q = 〈p1, q1; . . . ;

pm, qm〉 where
∑

qipi = p (we deal with the distributions with non-finite sup-

port at the end of the proof) . If Q is skewed to the left, then it follows by The-

orem 2 that there is a sequence of lotteries Qi = 〈pi,1, qi,1, . . . , pi,ni
, qi,ni

〉 → Q

such that Q1 = 〈p, 1〉 and for all i, Qi+1 is obtained from Qi by a left symmet-

ric split. For each i, let Q̃i = (cpi,1 , qi,1; . . . ; cpi,ni
, qi,ni

). Suppose pi,j is split

into pi,j − α and pi,j + α. By eq. (3), as p > pi,j,

E[u
δp
(Q̃i)] =

q
i,j
u

δcp
(cpi,j) +

∑
m �=j

q
i,m

u
δcp

(cpi,m) �

1
2
q
i,j
u

δcp
(cpi,j−α) +

1
2
q
i,j
u

δcp
(cpi,j+α) +

∑
m �=j

q
i,m

u
δcp

(cpi,m) =

E[u
δcp

(Q̃i+1)].

As Qi → Q, and as for all i, u
δcp

(cp) � E[u
δp
(Q̃i)], it follows by continuity that

u
δcp

(cp) � E[u
δcp

(Q̃)]. By Fréchet Differentiability

∂

∂ε
V
(
εQ̃+ (1− ε)δcp

)∣∣∣∣
ε=0

� 0.
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Quasi-concavity now implies that V (δcp) � V (Q̃), or 〈p, 1〉 � Q. Finally, as

preferences are continuous, it follows by that the theorem holds for all Q, even

if its support is not finite (see remark 1 at the end of the proof of Theorem 2).

For the second part of the theorem, we show in Appendix B that the

functional form in Example 1 satisfies all the assumptions of the theorem and

always accepts some positively skewed noise. �

Proof of Theorem 2: The main difficulty in proving the first part of this

theorem is the fact that whereas outcomes to the left of μ can be manipulated,

any split that lands an outcome to the right of μ must hit its exact place

according to Y , as we will not be able to touch it later again.

Lemma 1 proves part 1 of the theorem for binary lotteries Y . After

a preparatory claim (Lemma 2), the general case of this part is proved in

Lemma 3 for lotteries Y with FY (μ) � 1
2
, and for all lotteries in Lemma 4.

That this can be done with bounded shifts is proved in Lemma 5. Part 2 of

the theorem is proved in Lemma 6.

Lemma 1 Let Y = (x, r; z, 1 − r) with mean E[Y ] = μ, x < z, and r �

1
2
. Then there is a sequence of lotteries Xi with expected value μ such that

X1 = (μ, 1), Xi → Y , and Xi+1 is obtained from Xi by a left symmetric split.

Moreover, if ri and r′i are the probabilities of x and z in Xi, then ri ↑ r and

r′i ↑ 1− r.

Proof: The main idea of the proof is to have at each step at most five out-

comes: x, μ, z, and up to two outcomes between x and μ. In a typical move

either μ or one of the outcomes between x and μ, denote it w, is split “as far

as possible,” which means:

1. If w ∈ (x, x+μ

2
], then split its probability between x and w + (w − x) =

2w − x. Observe that x < 2w − x � μ.

2. If w ∈ [x+z
2
, μ], then split its probability between z and w − (z − w) =

2w − z. Observe that x � 2w − z < μ.

3. If w ∈ (x+μ

2
, x+z

2
), then split its probability between μ and w− (μ−w) =

2w − μ. Observe that x < 2w − μ < μ.
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If r = 1
2
, that is, if μ = x+z

2
then the sequence terminates after the first split.

We will therefore assume that r < 1
2
. Observe that the this procedures never

split the probabilities of x and z hence these probabilities form increasing

sequences. We identify and analyze three cases: a. For every i the support

of Xi is {x, yi, z}. b. There is k > 1 such that the support of Xk is {x, μ, z}.

c. Case b does not happen, but there is k > 1 such that the support of Xk is

{x, wk, μ, z}. We also show that if for all i > 1, μ is not in the support of Xi,

then case a prevails.

a. The simplest case is when for every i the support of Xi has three outcomes

at most, x < yi < z. By construction, the probability of yi is
1
2i
, hence Xi

puts 1 − 1
2i

probability on x and z. In the limit these converge to a lottery

over x and z only, and since for every i, E[Xi] = μ, this limit must be Y . For

the former, let X = (3, 1) and Y = (0, 1
4
; 4, 3

4
) and obtain

X = (3, 1) → (2, 1
2
; 4, 1

2
) → (0, 1

4
; 4, 1

4
+ 1

2
) = Y .

For a sequence that does not terminate, let X = (5, 1) and Y = (0, 1
6
; 6, 5

6
).

Here we obtain

X = (5, 1) → (4, 1
2
; 6, 1

2
) → (2, 1

4
; 6, 3

4
) → (0, 1

8
; 4, 1

8
; 6, 3

4
) → . . .

(0, 1
2

∑n

1
1
4i
; 4, 1

2·4n
; 6, 1

2
+
∑n

1
1
4i
) → . . . (0, 1

6
; 6, 5

6
) = Y .

b. Suppose now that even though at a certain step the obtained lottery has

more than three outcomes, it is nevertheless the case that after k splits we

reach a lottery of the form Xk = (x, pk;μ, qk; z, 1− pk − qk). For example, let

X = (17, 1) and Y = (24, 17
24
; 0, 7

24
). The first five splits are

X = (17, 1) → (10, 1
2
; 24, 1

2
) → (3, 1

4
; 17, 1

4
; 24, 1

2
) →

(0, 1
8
; 6, 1

8
; 17, 1

4
; 24, 1

2
) → (0, 3

16
; 12, 1

16
; 17, 1

4
; 24, 1

2
) → (4)

(0, 7
32
; 17, 1

4
; 24, 17

32
)

By construction k � 2 and qk � 1
4
. Repeating these k steps j times will yield
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the lottery Xjk = (x, pjk;μ, qjk; z, 1 − pjk − qjk) → Y as qjk → 0 and as the

expected value of all lotteries is μ, pjk ↑ r and 1− pjk − qjk ↑ 1− r.

c. If at each stage Xi puts no probability on μ then we are in case a. The

reason is that as splits of type 3 do not happen, in each stage the probability

of the outcome between x and z is split between a new such outcome and

either x or z, and the number of different outcomes is still no more than three.

Suppose therefore that at each stage Xi puts positive probability on at least

one outcome w strictly between x and μ (although these outcomes w may

change from one lottery Xi to another) and at some stage Xi puts (again)

positive probability on μ. Let k � 2 be the first split that puts positive

probability on μ. We consider two cases.

c1. k = 2: In the first step, the probability of μ is divided between z and

2μ − z and in the second step the probability of 2μ − z is split and half of

it is shifted back to μ (see for example the second split in eq. (4) above). In

other words, the first split is of type 2 while the second is of type 3. By the

description of the latter,

x+ μ

2
< 2μ− z <

x+ z

2
⇐⇒

2

3
<

μ− x

z − x
<

3

4
(5)

The other one quarter of the original probability of μ is shifted from 2μ− z to

2μ− z − (μ− [2μ− z]) = 3μ− 2z �
x+ μ

2
⇐⇒ 4(z − x) � 5(μ− x)

Which is satisfied by eq. (5). Therefore, in the next step a split of type 1 will

be used, and one eighth of the original probability of μ will be shifted away

from 2μ − z to x. In other words, in three steps 5
8
of the original probability

of μ is shifted to x and z, one quarter of it is back at μ, and one eighth of it

is now on an outcome w1 < μ. �

c2. k � 3: For example, X = (29, 1) and Y = (48, 29
48
; 0, 19

48
). Then

X = (29, 1) → (10, 1
2
; 48, 1

2
) → (0, 1

4
; 20, 1

4
; 48, 1

2
) →

(0, 1
4
; 11, 1

8
; 29, 1

8
; 48, 1

2
) → . . . (6)
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After k splits 1
2k

of the original probability of μ is shifted back to μ and 1
2k

is shifted to another outcome w1 < μ. The rest of the original probability is

split (not necessarily equally) between x and z. �

Let 
 = max{k, 3}. We now construct inductively a sequence of cycles,

where the length of cycle j is 
 + j − 1. Such a cycle will end with the

probability distributed over x < wj < μ < z. Denote the probability of μ by

pj and that of wj by qj. We show that pj + qj → 0. The probabilities of x

and z are such that the expected value is kept at μ, and as pj + qj → 0, it will

follow that the probabilities of x and z go up to r and 1− r, respectively. In

the example of eq. (6), 
 = 3, the length of the first cycle (where j = 1) is 3,

and w1 = 11.

Suppose that we’ve finished the first j cycles. Cycle j + 1 starts with

splitting the pj probability of μ to {x, w1, μ, z} as in the first cycle. One of the

outcomes along this sequence may be wj, but we will continue to split only the

“new” probability of this outcome (and will not yet touch the probability qj

of wj). At the end of this part of the new cycle, the probability is distributed

over x, w1, wj, μ, and z. At least half of pj, the earlier probability of μ, is

shifted to {x, z}, and the probabilities of both these outcomes did not decrease.

Continuing the example of eq. (6), the first part of the second cycle (where

j = 1) is

(0, 1
4
; 11, 1

8
; 29, 1

8
; 48, 1

2
) → (0, 1

4
; 10, 1

16
; 11, 1

8
; 48, 9

16
) →

(0, 9
32
; 11, 1

8
; 20, 1

32
; 48, 9

16
) → (0, 9

32
; 11, 9

64
; 29, 1

64
; 48, 9

16
)

The second part of cycle j + 1 begins with j − 1 splits starting with w1.

At the end of these steps, the probability is spread over x, wj, μ, and z. Split

the probability of wj between an element of {x, μ, z} and wj+1 which is not in

this set to get pj+1 and qj+1. In the above example, as j = 1 there is only one

split at this stage to

(0, 45
128

; 22, 9
128

; 29, 1
64
; 48, 9

16
)
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And w2 = 22. The first part of the third cycle (j = 2) leads to

(0, 91
256

; 11, 1
512

; 22, 9
128

; 29, 1
512

; 48, 73
128

)

The second part of this cycle has two splits. Of w1 = 11 into 0 and 22, and

then of w2 = 22 into μ = 29 and w3 = 15.

→ (0, 365
1024

; 22, 73
1024

; 29, 1
512

; 48, 73
128

) → (0, 365
1024

; 15, 73
2048

; 29, 77
2048

; 48, 73
128

)

We now show that for every j,

pj+2 + qj+2 �
3
4
(pj + qj) (7)

We first observe that for every j, pj+1 + qj+1 < pj + qj. This is due to the

fact that the rest of the probability is spread over x and z, the probability of

z must increase (because of the initial split in the probability of μ), and the

probabilities of x and z cannot go down.

When moving from (pj, qj) to (pj+2, qj+2), half of pj is switched to z. Later

on, half of qj is switched either to x or z, or to μ, in which case half of it (that

is, one quarter of qj) will be switched to z on the move from pj+1 to pj+2. This

proves inequality (7), hence the lemma. �

Lemma 2 Let X = (x1, p1; . . . ; xn, pn) and Y = (y1, q1; . . . ; ym, qm) where

x1 � . . . � xn and y1 � . . . � ym be two lotteries such that X dominates Y

by second-order stochastic dominance. Then there is a sequence of lotteries Xi

such that X1 = X, Xi → Y , Xi+1 is obtained from Xi by a symmetric (not

necessarily always left or always right) split of one of the outcomes of Xi, all

the outcomes of Xi are between y1 and ym, and the probabilities the lotteries

Xi put on y1 and ym go up to q1 and qm, respectively.

Proof: From Rothschild and Stiglitz [36, p. 236] we know that we can present

Y as (y11, q11; . . . ; ynn, qnn) such that
∑

j qkj = pk and
∑

j qkjykj/pk = xk,

k = 1, . . . , n.
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Let Z = (z1, r1; . . . ; z�, r�) such that z1 < . . . < z� and E[Z] = z. Let

Z0 = (z, 1). One can move from Z0 to Z in at most 
 steps, where at each step

some of the probability of z is split into two outcomes of Z without affecting

the expected value of the lottery, in the following way. If

r1z1 + r�z�
r1 + r�

� z (8)

then move r1 probability to z1 and r′� � r� to z� such that r1z1+r′�z� = z(r1+r′�).

However, if the sign of the inequality in (8) is reversed, then move r� probability

to z� and r′1 � r1 probability to z� such that r′1z1+r�z� = z(r′1+r�). Either way

the move shifted all the required probability from z to one of the outcomes of

Z without changing the expected value of the lottery.

Consequently, one can move from X to Y in 
2 steps, where at each step

some probability of an outcomes of X is split between two outcomes of Y .

By Lemma 1, each such split can be obtained as the limit of symmetric splits

(recall that we do not require in the current lemma that the symmetric splits

will be left or right splits). That all the outcomes of the obtained lotteries are

between y1 and ym, and that the probabilities these put on y1 and ym go up

to q1 and qm follow by Lemma 1. �

Lemma 3 Let Y = (y1, p1; . . . ; yn, pn), y1 � . . . � yn, with expected value μ

be skewed to the left such that FY (μ) �
1
2
. Then there is a sequence of lotteries

Xi with expected value μ such that X1 = (μ, 1), Xi → Y , and Xi+1 is obtained

from Xi by a left symmetric split. Moreover, if ri and r′i are the probabilities

of y1 and yn in Xi, then ri ↑ p1 and r′i ↑ pn.

Proof: Suppose wlg that yj∗ = μ (of course, it may be that pj∗ = 0). Since

FY (yj∗) �
1
2
, it follows that t :=

∑n

j=j∗+1 pj �
1
2
. As Y is skewed to the left,

yn − μ � μ − y1, hence 2μ − yn � y1. Let m = n − j∗ be the number of

outcomes of Y that are strictly above the expected value μ. Move from X1 to

Xm = (2μ− yn, pn; . . . ; 2μ− yj∗+1, pj∗+1; yj∗ , 1− 2t; yj∗+1, pj∗+1; . . . ; yn, pn) by

repeatedly splitting probabilities away from μ. All these splits are symmetric,

hence left symmetric splits.
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Next we show that Y is a mean preserving spread of Xm. Obviously,

E[Xm] = E[Y ] = μ. Integrating by parts, we have for x � μ

yn − μ =

∫ yn

y1

FY (z)dz =

∫ x

y1

FY (z)dz +

∫ yn

x

FY (z)dz

yn − μ =

∫ yn

y1

FXm
(z)dz =

∫ x

y1

FXm
(z)dz +

∫ yn

x

FXm
(z)dz

Since FY and FXm
coincide for z � μ, we have, for x � μ,

∫ x

y1
FXm

(z)dz =∫ x

y1
FY (z)dz and in particular,

∫ x

y1
FXm

(z)dz �
∫ x

y1
FY (z)dz.

For x < μ it follows by the assumption that Y is skewed to the left and by

the construction of Xm as a symmetric lottery around μ that∫ x

y1

FXm
(z)dz =

∫ 2μ−y1

2μ−x

[1− FXm
(z)]dz =∫ 2μ−y1

2μ−x

[1− FY (z)]dz �

∫ x

y1

FY (z)dz

Since to the right of μ, Xm and Y coincide, we can view the left side of Y

as a mean preserving spread of the left side of Xm. By Lemma 2 the left side

of Y is the limit of symmetric mean preserving spreads of the left side of Xm.

Moreover, all these splits take place between y1 and μ and are therefore left

symmetric splits. By Lemma 2 it also follows that ri ↑ p1 and r′i ↑ pn. �

We now show that Lemma 3 holds without the restriction FY (μ) �
1
2
.

Lemma 4 Let Y with expected value μ be skewed to the left. Then there is a

sequence of lotteries Xi with expected value μ such that X1 = (μ, 1), Xi → Y ,

and Xi+1 is obtained from Xi by a left symmetric split.

Proof: The first step in the proof of Lemma 3 was to create a symmetric distri-

bution around μ such that its upper tail (above μ) agrees with FY . Obviously

this can be done only if FY (μ) � 1
2
, which is no longer assumed. Instead,

we apply the proof of Lemma 3 successively to mixtures of FY and δμ, the

distribution that yields μ with probability one.
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Suppose that FY (μ) = λ < 1
2
. Let γ = 1/2(1 − λ) and define Z to be the

lottery obtained from the distribution γFY + (1− γ)δμ. Observe that

FZ(μ) = γFY (μ) + (1− γ)δμ(μ) =
λ

2(1− λ)
+

1− 2λ

2(1− λ)
=

1

2

It follows that the lotteries Z and (μ, 1) satisfy the conditions of Lemma 3,

and therefore there is sequence of lotteries Xi with expected value μ such that

X1 = (μ, 1), Xi → Z, and Xi+1 is obtained from Xi by a left symmetric

split. This is done in two stages. First we create a symmetric distribution

around μ that agrees with Z above μ (denote the number of splits needed in

this stage by t), and then we manipulate the part of the distribution which is

weakly to the left of μ by taking successive symmetric splits (which are all left

symmetric splits when related to μ) to get nearer and nearer to the second-

order stochastically dominated left side of Z as in Lemma 2. Observe that the

highest outcome of this part of the distribution Z is μ, and its probability is

1− γ. By Lemma 2, for every k � 1 there is 
k such that after 
k splits of this

second phase the probability of μ will be at least rk = (1 − γ)(1 − 1
k+1

) and

‖ Xt+�k − Z ‖< 1
k
.

The first cycle will end after t+
1 splits with the distribution FZ1 . Observe

that the probabilities of the outcomes to the right of μ in Z1 are those of the

lottery Y multiplied by γ. The first part of second cycle will be the same as the

first cycle, applied to the rk conditional probability of μ. At the end of this part

we’ll get the lottery Z ′
1 which is the same as Z1, conditional on the probability

of μ. We now continue the second cycle by splitting the combination of Z1

and Z ′
1 for the total of t + 
1 + 
2 steps. As we continue to add such cycles

inductively we get closer and closer to Y , hence the lemma. �

Next we show that part 1 of the theorem can be achieved by using bounded

spreads. The first steps in the proof of Lemma 3 involve shifting probabilities

from μ to all the outcomes of Y to the right of μ, and these outcomes are

not more than max yi − μ away from μ. All other shifts are symmetric shifts

involving only outcomes to the left of μ. The next lemma shows that such

shifts can be achieved as the limit of symmetric bounded shifts.
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Lemma 5 Let Z = (z−α, 1
2
; z+α, 1

2
) and let ε > 0. Then there is a sequence

of lotteries Zi such that Z0 = (z, 1), Zi → Z, and Zi+1 is obtained from Zi by

a symmetric (not necessarily left or right) split of size smaller than ε.

Proof: The claim is interesting only when ε < α. Fix n such that ε > α
n
.

We show that the lemma can be proved by choosing the size of the splits to

be α
n
. Consider the 2n + 1 points zk = z + k

n
, k = −n, . . . , n and construct

the sequence {Zi} where Zi = (z − α, pi,−n; z − n−1
n
α, pi,−n+1; . . . ; z + α, pi,n)

as follows.

The index i is odd: Let zj be the highest outcome in {z, . . . , z+ n−1
n
α} with

the highest probability in Zi−1. Formally, j satisfies:

• 0 � j � n− 1

• pi−1,j � pi−1,k for all k

• If for some j′ ∈ {0, . . . , n− 1}, pi−1,j′ � pi−1,k for all k, then j � j′.

Split the probability of zj between zj −
α
n
and zj +

α
n
(i.e., between zj−1 and

zj+1). That is, pi,j−1 = pi−1,j−1 +
1
2
pi−1,j, pi,j+1 = pi−1,j+1 +

1
2
pi−1,j , pi,j = 0,

and for all k �= j − 1, j, j + 1, pi,k = pi−1,k.

The index i is even: In this step we create the mirror split of the one done

in the previous step. Formally, If j of the previous stage is zero, do nothing.

Otherwise, split the probability of z−j between z−j −
α
n
and z−j +

α
n
. That is,

pi,−j−1 = pi−1,−j−1 +
1
2
pi−1,−j, pi,−j+1 = pi−1,−j+1 +

1
2
pi−1,−j, pi,−j = 0, and for

all k �= −j − 1,−j,−j + 1, pi,k = pi−1,k.

After each pair of these steps, the probability distribution is symmetric

around z. Also, the sequences {pi,−n}i and {pi,n} are non decreasing. Being

bounded by 1
2
, they converge to a limit L. Our aim is to show that L = 1

2
. Sup-

pose not. Then at each step the highest probability of {pi−1,−n+1, . . . , pi−1,n−1

must be at least 
 := (1 − 2L)/(2n − 1) > 0. The variance of Zi is bounded

from above by the variance of (μ − α, 1
2
;μ + α, 1

2
), which is α2. Splitting p

probability from z to z − α
n
and z + α

n
will increase the variance by p(α

n
)2.

Likewise, for k �= −n, 0, n, splitting p probability from z+ kα
n

to z+ (k+1)α
n

and
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z − (k−1)α
n

will increase the variance by p

2
(α
n
)2. Therefore, for positive even i

we have

σ2(Zi)− σ2(Zi−2) �
1− 2L

2n− 1

(α
n

)2

If L < 1
2
, then after enough steps the variance of Zi will exceed α2, a contra-

diction. �

That we can do the theorem for all lotteries Y follows by the fact that a

countable set of countable sequences is countable. To finish the proof of the

theorem, we need the following result:

Lemma 6 Consider the sequence {Xi} of lotteries where X1 = (μ, 1) and

Xi+1 is obtained from Xi by a left symmetric split. Then the distributions Fi

of Xi converge (in the L1 topology) to a skewed to the left distribution with

expected value μ.

Proof: That such sequences converge follows from the fact that a symmetric

split will increase the variance of the distribution, but as all distributions are

over the bounded [x, x] segment of �, the variances of the distributions increase

to a limit. Replacing (x, p) with (x − α, p
2
; x + α, p

2
) increases the variance of

the distribution by

p

2
(x− α− μ)2 +

p

2
(x+ α− μ)2 − p(x− μ)2 = pα2

and therefore the distance between two successive distributions in the se-

quences in bounded by x − x times the change in the variance. The sum

of the changes in the variances is bounded, as is therefore the sum of distances

between successive distributions, hence Cauchy criterion is satisfied and the

sequence converges.

Next we prove that the limit is a skewed to the left distribution with

expected value μ. Let F be the distribution of X = (x1, p1; . . . ; xn, pn) with

expected value μ be skewed to the left. Suppose wlg that x1 � μ, and break

it symmetrically to obtain X ′ = (x1 − α, p1
2
; x1 + α, p1

2
; x2, p2; . . . ; xn, pn) with

the distribution F ′. Note that E[X ′] = μ. Consider the following two cases.
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Case 1: x1+α � μ. Then for all δ, η2(F, δ) = η2(F
′, δ). For δ such that μ−δ �

x1 −α or such that x1 +α � μ− δ, η1(F
′, δ) = η1(F, δ) � η2(F, δ) = η2(F

′, δ).

For δ such that x1−α < μ−δ � x1, η1(F
′, δ) = η1(F, δ)+[(μ−δ)−(x1−α)]p1

2
>

η1(F, δ) � η2(F, δ) = η2(F, δ). Finally, for δ such that x1 < μ− δ < x1 + α (�

μ), η1(F
′, δ) = η1(F, δ)+[(x1+α)−(μ−δ)]p1

2
> η1(F, δ) � η2(F, δ) = η2(F

′, δ).

Case 2: x1+α > μ. Then for all δ such that μ+δ � x1+α, η2(F, δ) = η2(F
′, δ).

For δ such that μ− δ � x1−α, η1(F
′, δ) = η1(F, δ) � η2(F, δ) = η2(F

′, δ). For

δ such that x1−α < μ− δ � x1, η1(F
′, δ) = η1(F, δ)+ [(μ− δ)− (x1−α)]p1

2
�

η2(F, δ) + [(μ− δ)− (x1 − α)]p1
2
� η2(F, δ) + max{0, (x1 + α)− (μ + δ)}p1

2
=

η2(F
′, δ). Finally, for δ such that μ− δ > x1, η1(F

′, δ) = η1(F, δ)+ [(x1 +α)−

(μ− δ)]p1
2
� η2(F, δ) + max{0, (x1 + α)− (μ+ δ)}p1

2
= η2(F

′, δ).

If Xn → Y , all have the same expected value and for all n, Xn is skewed

to the left, then so is Y . �

Remark 1 The two parts of Theorem 2 do not create a simple if and only if

statement, because the support of the limit distribution F in part 2 need not be

finite. On the other hand, part 1 of the theorem does not hold for continuous

distributions. By the definition of left symmetric splits, if the probability of

x > μ in Xi is p, then for all j > i, the probability of x in Xj must be at

least p. It thus follows that the distribution F cannot be continuous above μ.

However, it can be shown that if F with expected value μ is skewed to the

left, then there is a sequence of finite skewed to the left distributions Fn, each

with expected value μ, such that Fn → F . This enables us to use Theorem 2

even for continuous distributions.

Proof of Proposition 1: Note that by eq. (2), for any p, the value of the

noise 〈p+ α, 1
2
; p− α, 1

2
〉 is

1
2
u
(
v−1[(p+ α)v(x) + (1− p− α)v(y)]

)
+

1
2
u
(
v−1[(p− α)v(x) + (1− p+ α)v(y)]

)
.
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The value of the simple lottery (x, p; x, 1− p) is

u
(
v−1[pv(x) + (1− p)v(x)]

)
.

Rejection of symmetric noise implies that for any p and α in the relevant

range,

u
(
v−1[pv(x) + (1− p)v(x)]

)
� (9)

1
2
u
(
v−1[(p+ α)v(x) + (1− p− α)v(x)]

)
+

1
2
u
(
v−1[(p− α)v(x) + (1− p+ α)v(x)]

)
.

Pick any two numbers a > b in [0, 1] and note that by setting p = 1
2
(a+ b) and

α = 1
2
(a− b), inequality (9) is equivalent to the requirement that

u
(
v−1[1

2
(a+ b)v(x) + (1− 1

2
(a+ b))v(x)]

)
�

1
2
u
(
v−1[av(x) + (1− a)v(x)]

)
+ 1

2
u
(
v−1[bv(x) + (1− b)v(x)]

)
.

Since a and b are arbitrary, this inequality should hold for all such pairs. This

is the case if and only if the function u ◦ v−1 is mid-point concave, which by

continuity implies that u ◦ v−1 is concave. But then the decision maker would

reject any noise. �

Proof of Proposition 2: Let the lottery Y be obtained from the lottery Z

by a left symmetric split and denote by x their common mean. For example,

the outcome zi � x with probability pi of Z is split into zi−α and zi+α, each

with probability pi
2
. Denote the distributions of Y and Z by F and G. Since

for t < 0 and odd n, tn is a concave function, it follows that if zi+α � x, then∫ x

x

(t− x)ndF (t)−

∫ x

x

(t− x)ndG(t) =

pi
2
[(zi − α− x)n + (zi + α− x)n]− pi(zi − x)n � 0. (10)

If zi + α > x we need to manipulate eq. (10) a little further. Let ξ = zi − x
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and obtain

pi
2
[(zi − α− x)n + (zi + α− x)n]− pi(zi − x)n =

pi
2
[(ξ − α)n + (ξ + α)n]− piξ

n =

pi
2
ξn +

pi
2

n−1
2∑

j=1

(
n

2j−1

)
ξ2j−1αn−2j+1 −

pi
2

n−1
2∑

j=0

(
n

2j

)
ξ2jαn−2j +

pi
2
ξn +

pi
2

n−1
2∑

j=1

(
n

2j−1

)
ξ2j−1αn−2j+1 +

pi
2

n−1
2∑

j=0

(
n

2j

)
ξ2jαn−2j − piξ

n =

pi

n−1
2∑

j=1

(
n

2j−1

)
ξ2j−1αn−2j+1

� 0

where the last inequality follows by the fact that ξ � 0. Since X with expected

value μ is skewed to the left it follows by Theorem 2 that it can be obtain as the

limit of a sequence of left symmetric splits. At δμ (the distribution of (μ, 1)),∫ x

x
(y − μ)ndδμ = 0. The claim follows by the fact that each left symmetric

split reduces the value of the integral. �

Proof of Proposition 3: Let the lottery Y be obtained from the lottery

Z by a left symmetric split. Denote by μ their common mean and assume

that m̄(Z) � μ. As Y is obtained from Z by splitting one of its outcomes

zi � μ � m̄(Z), this split can only increase the mass on the distribution above

μ, thus (weakly) increasing its median.

By Theorem 2, X is the limit of a sequence of left symmetric splits starting

with (x, 1), hence the claim. �
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Appendix B: Example 1

A quadratic utility (Chew, Epstein, and Segal [9]) functional is given by V (p) =∑
x

∑
y pxpyθ(x, y), where θ is symmetric. Following [9, Example 5 (p. 145)],

If θ(x, y) = v(x)w(y)+v(y)w(x)
2

, where v and w are positive functions, then V (p) =

E[v(p)]× E[w(p)]. This is the form of V we analyze below.

The function V is the product of two positive linear functions of the prob-

abilities, hence quasi concave. To see why, observe that lnV (p) = lnE[v(p)] +

lnE[w(p)]. The sum of concave functions is concave, hence quasi concave,

and any monotone nondecreasing transformation of a quasi concave function

is quasi concave.

Direct calculations show that the local utility function of any quadratic

utility is given by uF (x) = 2
∫
θ(x, y)dF (y). Since we are only interested in

the behavior of the function in lotteries of the form δy := (y, 1), we have

uδy(x) = 2θ(x, y) = v(x)w(y) + v(y)w(x)

Take v(x) = x and let w be any increasing, concave, and differential func-

tion such that w(0) = 0. We now show that V satisfies Weak Hypothesis II.

That is, we show that

RA := −u′′δy(x)

u′δy(x)
= − yw′′(x)

w(y) + yw′(x)

is an increasing function of y. We have

− ∂

∂y

(
yw′′(x)

w(y) + yw′(x)

)
> 0⇐⇒

w′′(x)(w(y) + yw′(x)) < (w′(y) + w′(x))yw′′(x)⇐⇒
w(y) > w′(y)y ⇐⇒
w(y)/y > w′(y)

which holds since w is concave.
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Next we analyze the functional form V (〈p1, q1; . . . ; pn, qn〉) = E[w(cp)] ×
E[cp] where w(x) = ζx−xζ

ζ−1 , cp = βp + (1 − β)pκ, ζ = 1.024,13 κ = 1.1, and

β = 0.15. Since all the inequalities below are strict, there is an open set of

parameters for which they are satisfied as well. Observe that

w(cp) =
ζ [βp+ (1− β)pκ]− [βp+ (1− β)pκ]ζ

ζ − 1

We show first that this functional rejects all symmetric noise. For any

0 < p < 1 and ε � min{p, 1− p}, let

f(ε, p) := [w(cp+ε) + w(cp−ε)]× [cp+ε + cp−ε]

Rejection of symmetric noise requires that f(0, p)−f(ε, p) > 0 for all p ∈ (0, 1)

and ε ∈ (0,min{p, 1−p}). Numerical calculations show that this is indeed the

case. See graph below.

Figure A1: Rejection of symmetric noise

Using the same functional as above, we now show that for every p > 0

13since ζ > 1, we have that w′(x) = ζ−ζxζ−1

ζ−1 > 0 and w′′(x) = (ζ−1)ζxζ−2

ζ−1 < 0, hence w is
increasing and concave.
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there exists a sufficiently small q > 0 such that 〈p, q; 0, 1− q〉 � 〈pq, 1〉, that
is, the decision maker always accepts some positively skewed noise.

For q = 0, V (cpq, 1)− V (cp, q; 0, 1− q) = 0. We show that for every p < 1,

the first non-zero derivative of this expression with respect to q at q = 0 is

negative. We get

(ζ − 1)V (cpq, 1) = (ζ − 1)w(cpq)cpq =(
ζ [βpq + (1− β)pκqκ]− [βpq + (1− β)pκqκ]ζ

)
× [βpq + (1− β)pκqκ]

Differentiate with respect to q to obtain(
ζ
[
βp+ κ(1− β)pκqκ−1

]− ζ [βpq + (1− β)pκqκ]ζ−1
[
βp+ κ(1− β)pκqκ−1

])×
[βpq + (1− β)pκqκ] +(

ζ [βpq + (1− β)pκqκ]− [βpq + (1− β)pκqκ]ζ
)
× [

βp+ κ(1− β)pκqκ−1
]

At q = 0, this expression equals 0. Differentiate again with respect to q to

obtain

ζ
(
κ(κ− 1)(1− β)pκqκ−2 − (ζ − 1) [βpq + (1− β)pκqκ]ζ−2

[
βp+ κ(1− β)pκqκ−1

]2−
[βpq + (1− β)pκqκ]ζ−1 κ(κ− 1)(1− β)pκqκ−2

)
× [βpq + (1− β)pκqκ] +

2ζ
([

βp+ κ(1− β)pκqκ−1
]− [βpq + (1− β)pκqκ]ζ−1

[
βp+ κ(1− β)pκqκ−1

])×[
βp+ κ(1− β)pκqκ−1

]
+(

ζ [βpq + (1− β)pκqκ]− [βpq + (1− β)pκqκ]ζ
)
× κ(κ− 1)(1− β)pκqκ−2

Observe that

ζ
(
κ(κ− 1)(1− β)pκqκ−2 − (ζ − 1) [βpq + (1− β)pκqκ]ζ−2

[
βp+ κ(1− β)pκqκ−1

]2−
[βpq + (1− β)pκqκ]ζ−1 κ(κ− 1)(1− β)pκqκ−2

)
× [βpq + (1− β)pκqκ] =

ζ
(
κ(κ− 1)(1− β)pκqκ−1 − (ζ − 1)q [βpq + (1− β)pκqκ]ζ−2

[
βp+ κ(1− β)pκqκ−1

]2−
[βpq + (1− β)pκqκ]ζ−1 κ(κ− 1)(1− β)pκqκ−1

)
× [

βp+ (1− β)pκqκ−1
]
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This expression converges to zero with q. This is obvious for ζ � 2. If

2 > ζ > 1, then notice that by l’Hospital’s rule

lim
q→0

q

[βpq + (1− β)pκqκ]2−ζ
= lim

q→0

[βpq + (1− β)pκqκ]ζ−1

(2− ζ) [βp+ κ(1− β)pκqκ−1]
= 0

Also, as q → 0, the limit of the expression

2ζ
([

βp+ κ(1− β)pκqκ−1
]− [βpq + (1− β)pκqκ]ζ−1

[
βp+ κ(1− β)pκqκ−1

])×[
βp+ κ(1− β)pκqκ−1

]
is 2ζβ2p2. Finaly,(

ζ [βpq + (1− β)pκqκ]− [βpq + (1− β)pκqκ]ζ
)
× κ(κ− 1)(1− β)pκqκ−2 =(

ζ
[
βp+ (1− β)pκqκ−1

]− [
βpq1−

1
ζ + (1− β)pκqκ−

1
ζ

]ζ)
× κ(κ− 1)(1− β)pκqκ−1

As ζ, κ > 1, this expression goes to zero with q.

On the other hand, (ζ − 1)V (cp, q; 0, 1− q) equals

q2
(
ζ [βp+ (1− β)pκ]− [βp+ (1− β)pκ]ζ

)
× [βp+ (1− β)pκ]

Its first order derivative with respect to q at q = 0 is zero, while the second

derivative at this point equals

2
(
ζ [βp+ (1− β)pκ]− [βp+ (1− β)pκ]ζ

)
× [βp+ (1− β)pκ]

We therefore get that the first order derivative of V (cpq), 1)− V (cp, q; 0, 1− q)

at q = 0 is zero, and that

(ζ − 1) lim
q→0

∂2

∂q2
[V (cpq), 1)− V (cp, q; 0, 1− q)] = g(p; β, ζ, κ) :=

2ζβ2p2 − 2
(
ζ [βp+ (1− β)pκ]− [βp+ (1− β)pκ]ζ

)
× [βp+ (1− β)pκ]

The graph below shows g(p; β, ζ, κ) for β = 0.15, κ = 1.1, and ζ = 1.024.
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Note that for these values g(p; β, ζ, κ) < 0 for all p ∈ (0, 1), which means that

for q > 0 small enough, the positively skewed noise 〈p, q; 0, 1− q〉 is accepted.
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Figure A2: g(p; 0.15, 1.024, 1.1)
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[4] Abdulkadiroğlu, A. and T. Sönmez, 2013. “Matching markets: Theory

and practice,” Advances in Economics and Econometrics, D. Acemoglu,

M. Arello, and E. Dekel (eds), Cambridge: CUP.

[5] Becker, S.W. and F.O. Brownson, 1964: “What price ambiguity? Or

the role of ambiguity in decision making,” Journal of Political Economy

72:62–73.

[6] Bernasconi, M. and G. Loomes, 1992. “Failures of the reduction principle

in an Ellsberg-type problem,” Theory and Decision 32:77–100.

[7] Boiney, L.G., 1993. “The effects of skewed probability on decision making

under ambiguity,” Organizional Behavior and Human Decisions Processes

56:134–148.

[8] Camerer, C. F. and M. Weber, 1992. “Recent Developments in Modeling

Preferences: Uncertainty and Ambiguity,” Journal of Risk and Uncer-

tainty, 5: 325-370.

[9] Chew, S.H., L.G. Epstein, and U. Segal, 1991. “Mixture symmetry and

quadratic utility,” Econometrica 59:139–163.

[10] Chew S.H., B. Miao, and S. Zhong, 2013. “Partial ambiguity,” working

paper.

41



[11] Chew, S.H. and W.S. Waller, 1986. “Empirical tests of weighted utility

theory,” Journal of Mathematical Psychology 30:55–72.

[12] Conlisk, J., 1989. “Three variants on the Allais example,” American Eco-

nomic Review 79:392–407.

[13] Coombs, C. and L. Huang, 1976. “Tests of the betweenness property of

expected utility,” Journal of Mathematical Psychology 13:323-337.

[14] Dekel, E., 1989. “Asset demands without the independence Axiom,”

Econometrica 57:163–69.

[15] Dillenberger, D., 2010. “Preferences for one-shot resolution of uncertainty

and Allais-type behavior,” Econometrica 78:1973–2004.

[16] Dimmock, S. G., R. Kouwenberg, O. S. Mitchell, and K. Peijnenburg,

2013. “Ambiguity attitudes and economic behavior,” Working paper, Boc-

coni.

[17] Dwenger, N., D. Kubler, and G. Weizsacker, 2013. “Flipping a coin: The-

ory and evidence,” Mimeo, Humboldt-Universität zu Berlin.

[18] Ellsberg, D., 1961. “Risk, ambiguity, and the Savage axioms,” Quarterly

Journal of Economics 75:643–669.

[19] Kocher, M. G, A. Lahno, and S.T. Trautmann, 2015. “Ambiguity aver-

sion is the exception,” Mimeo, University of Munich, Department of Eco-

nomics.

[20] Ghirardato, P., Maccheroni, F., and Marinacci, M., 2004. “Differentiating

ambiguity and ambiguity attitude,” Journal of Economic Theory 118:133–

73.

[21] Gilboa, I. and D. Schmeidler, 1989. “Maxmin expected utility with a

non-unique prior,” Journal of Mathematical Economics 18:141–153.

[22] Halevy, Y., 2007. “Ellsberg revisited: An experimental study,” Econo-

metrica 75:503–536.

42



[23] Harrison, G. W., J. Martinez-Correa, and J.T. Swarthout, 2012. “Re-

duction of compound lotteries with objective probabilities: Theory and

evidence,” working paper.

[24] Hylland, A., and Zeckhauser, R., 1979. “The efficient allocation of indi-

viduals to positions,” Journal of Political Economy 87:293–314.

[25] Kahn, B.E. and R.K. Sarin, 1988. “Modeling ambiguity in decisions under

uncertainty,” Journal of Consumer Research 15:265–272.

[26] Kahneman, D. and A. Tversky, 1979. “Prospect theory: An analysis of

decision under risk,” Econometrica 47:263–291.

[27] Kreps, D.M. and E.L. Porteus, 1978. “Temporal resolution of uncertainty

and dynamic choice theory,” Econometrica 46:185–200.

[28] Klibanoff, P., M. Marinacci, and S. Mukerji, 2005. “A smooth model of

decision making under ambiguity,” Econometrica 73:1849–1892.

[29] Machina, M.J., 1982. “ ‘Expected utility’ analysis without the indepen-

dence axiom,” Econometrica 50:277–323.

[30] Maccheroni, F., M. Marinacci, and A. Rustichini, 2006. “ Ambiguity

aversion, robustness, and the variational representation of preferences,”

Econometrica 74:1447–1498

[31] Masatlioglu, Y., Y. Orhun, and C. Raymond, 2015. “Skewness and intrin-

sic preferences for information, Mimeo.

[32] Menezes, C.F., C. Geiss, and J. Tressler, 1980. “Increasing downside risk,”

American Economic Review 70:921–932.

[33] Miao, B., and S. Zhong, 2012. “An experimental study of attitude towards

two-stage lottery,” working paper.

[34] Pathak, P.A. and J. Sethuraman, 2011. “Lotteries in student assignment:

An equivalence result,” Theoretical Economics 6:1–17.

43



[35] Quiggin, J., 1982. “A theory of anticipated utility,” Journal of Economic

Behavior and Organization 3:323–343.

[36] Rothschild, M. and J.E. Stiglitz, 1970. “Increasing risk: I. A definition,”

Journal of Economic Theory 2:225–243.

[37] Schmeidler, D., 1989. “Subjective probability and expected utility without

additivity,” Econometrica 57:571–587.

[38] Segal, U., 1987. “The Ellsberg paradox and risk aversion: An anticipated

utility approach,” International Economic Review 28:175–202.

[39] Segal, U., 1990. “Two-stage lotteries without the reduction axiom,”

Econometrica 58:349–377.

[40] Segal, U. and A. Spivak, 1990. “first-order versus second-order risk aver-

sion,” Journal of Economic Theory 51:111–125.
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